The Cross Product in Non Orthogonal Coordinate Systems
The form of the cross product I’ve shown in my post Coriolis Forces is:
The components of this cross product can be written as follows:
We will abbreviate these relationships as follows:
Now define the coordinate transform:
where
Then the cross product components can be written as follows:
Now Right multiplying the matrix by the transform gives:
Which can be written in this form:
Where:
2 Comments »
Leave a Reply

Recent
 Laplace Transform Via Limits
 log(CO2) and Scary Graphs
 Numeric Solutions to The Heat Equation
 Coriolis Forces in Hopkins and Simmons Vorticity Equation
 The Cross Product in Non Orthogonal Coordinate Systems
 Lagrangian Mechanics and The Heat Equation
 Laplace Transform of f(t) Related to smoothed f(t)?
 Coriolis Forces
 Vector Operations in Hoskins and Simmons Coordinates
 API/Object Viewers/Memory Mapping/
 Defining a Microsoft access Datasource
 Fractal Modeling of Turbulence

Links
Advertisements

Archives
 July 2012 (1)
 September 2009 (5)
 August 2009 (19)
 March 2009 (2)

Categories

RSS
Entries RSS
Comments RSS
There’s good info here. I did a search on the topic and found most people will agree with your blog. Keep up the good work mate!
Comment by DennisVega  September 30, 2009 
Hey, I read a lot of blogs on a daily basis and for the most part, people lack substance but, I just wanted to make a quick comment to say GREAT blog!…..I”ll be checking in on a regularly now….Keep up the good work! 🙂
Comment by Tnelson  September 30, 2009 